Examples
This page provides comprehensive examples of how to use cscore with simulations and real datasets.
Simulated scenarios
The simulation demonstrates three fundamental scenarios: 1. Independent responses: No relationship 2. Common responses: Genes behave similarly in both comparisons 3. Divergent responses: Genes behave oppositely
Real Data Examples
The following examples use datasets provided in the testdata/ directory.
- GSE237099 - Bulk RNA-seq data (unloading/reloading muscle study)
- GSE236519 - Single-cell RNA-seq data (neuronal cell types)
Bulk RNA-seq Example (GSE237099)
This example demonstrates C-score analysis using bulk RNA-seq data from a muscle unloading/reloading study.
cscore -i testdata/GSE237099 \
-a GSE237099_1_unloading_reloading_Reloading_vs_Control_deseq2.txt \
-b GSE237099_1_unloading_reloading_Unloading_vs_Control_deseq2.txt \
-o output_bulk_example.tsv \
-n ensembl_gene_id \
-e log2FoldChange \
-f padj \
-w 16 ## parallel workers
Expected Output:
The output file will contain columns including:
- score: C-score (positive = common direction; negative = divergent)
- p: permutation p-value for commonness/divergence
- q_value: Benjamini–Hochberg adjusted p-value
- convergence: "high" when commonness dominates, "low" otherwise
- All original columns from both input files with _comp1/_comp2 suffixes
3. Single-cell RNA-seq Examples (GSE236519)
This dataset contains differential expression results for different neuronal cell types comparing knockout (KO) vs. knockdown (KD) conditions.
cscore -i testdata/GSE236519 \
-a KO_Deep_Layer_neurons.txt \
-b KD_Deep_Layer_neurons.txt \
-o output_deep_layer_neurons.tsv \
-n gene \
-e logFC \
-f FDR
-w 16
Output Interpretation
C-score Values
- Positive scores: Genes show consistent direction of change (both up or both down)
- Negative scores: Genes show divergent responses (up in one condition, down in another)
- Magnitude: Larger absolute values indicate stronger commonness/divergence
Significance Testing
- p-value: Permutation-based significance of the observed C-score
- q_value: Multiple testing corrected p-value (Benjamini-Hochberg)
- convergence: Classification as "high" (common) or "low" (divergent) commonness
Getting Help
For additional options and help: